Turbofan Noise Reduction Associated
With Increased Bypass Nozzle Flow
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Left: Reduction in overall sound power level with increased nozzle flow as a function of
corrected stage thrust. Right: Change in fan stage adiabatic efficiency with increased

nozzle flow as a function of corrected rotor tip speed.

Long description of figures 1 and 2. Left: Graph for zero reference and for nozzle flow increase of 5 and
7.5 percent and area increase of 5.4 and 10.9 percent, respectively, showing nominal approach, cutback,
and takeoff. Right: Graph for zero reference and for nozzle flow increase of 5 and 7.5 percent and area
increase of 5.4 and 10.9 percent, respectively, showing approach, cutback, and takeoff.



An advanced 22-in. scale model turbofan, typical of a current-generation aircraft engine
design by GE Aircraft Engines, was tested in NASA Glenn Research Center’s 9- by 15-
Foot Low-Speed Wind Tunnel to explore the far-field acoustic effects of an increased
bypass nozzle area at simulated aircraft speeds of takeoff, approach, and landing. The
wind-tunnel-scale model consisted of the bypass stage fan, stators, and nacelle (including
the fan exit nozzle) of a typical turbofan. This fan-stage test was part of the NASA Glenn
Fan Broadband Source Diagnostic Test, second entry, which acquired aeroacoustic
results over a range of test conditions. A baseline nozzle was selected, and the nozzle
area was chosen for maximum performance at sea-level conditions. Two additional
nozzles were also tested--one with a 5.4-percent increase in nozzle area over the baseline
nozzle (sized for design point conditions), corresponding to a 5-percent increase in fan
weight flow, and another nozzle with a 10.9-percent increase in nozzle area over the
baseline nozzle (sized for maximum weight flow at sea-level conditions), corresponding
to a 7.5 percent increase in fan weight flow. Measured acoustic benefits with increased
nozzle area were very encouraging, showing overall sound power level reductions of 2
dB or more (left graph) while the stage adiabatic efficiency (right graph) and thrust (final
graph) actually increased by several percentage points. These noise-reduction benefits
were seen to include both rotor-interaction tones and broadband noise, and were evident
throughout the range of measured sideline angles.
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Long description of figure 3. Graph for zero reference and for nozzle flow increase of 5 and 7.5 percent and
area increase of 5.4 and 10.9 percent, respectively, showing approach, cutback, and takeoff.

These results suggest that, for a typical turbofan engine, a variable-area bypass exhaust
nozzle may be an effective way to decrease engine fan-stage noise while increasing
aerodynamic performance in terms of adiabatic efficiency and thrust. The baseline fixed-



area bypass nozzle in this test was sized for maximum stage performance at sea-level
conditions. However, turbofan engine bypass exhaust nozzles are normally sized for
maximum performance at that portion of the aircraft flight profile where most of the
flight time is spent--typically at the cruise condition. Increasing the nozzle flow reduced
the fan stage noise in this scale model test. Thus, it may be desirable to employ a
variable-area engine bypass exhaust nozzle to reduce fan-stage noise levels and optimize
performance at all rotor operating speeds. Even the addition of a limited-position
variable-area bypass nozzle, to reduce the mechanical complexity and added engine
weight of a continuously variable nozzle design, might be an effective retrofit to existing
turbofan engines to control fan-stage noise without sacrificing aerodynamic performance.
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